
1 Wobbrock and Kientz. “Research Contri-
butions in Human-Computer Interaction”.
In: ACM Interactions 23.3 (2016)

IDEs for Ideas
Research Statement
Andrew Head

December 21, 2020

What do data scientists, software engineers, authors of technical tu-
torials, and writers of scientific papers have in common?

They all routinely read and write complex information artifacts. For
instance, data scientists prototype code in computational notebooks
that mix together code snippets, documentation, and inline results.
Writers of scientific papers author articles that are packedwith techni-
cal symbols and terms. Although these artifacts are critical for experts
to share their knowledge with their audiences, they take considerable
effort to compose and comprehend.

complex info 
artifact

IDE for Ideas

AUTHORING READING

Figure 1: An IDE for Ideas is an intelligent
interactive tool that aids in the authoring
or reading of a complex information arti-
fact like a programming tutorial, compu-
tational notebook, or scientific paper.

In my research, I build IDEs for Ideas: systems to help program-
mers, data scientists, and scientists read and write complex informa-
tion artifacts like tutorials, notebooks, and papers (Figure 1). The
research borrows from software engineering the notion of an IDE,
or integrated development environment, a tool that supports com-
plex writing and reading tasks by providing rich interactive features
grounded in dedicated analysis algorithms.

programming 
tutorials

computational 
notebooks

scientific 
papers

AUTHORINGREADING

3Sec.

Future2Sec.

1Sec.

Figure 2: A visual guide to the topics in
this research statement.

I build and assess three types of systems. First, program distillation
tools that help programmers, data scientists, and teachers transform
messy code into readable, reusable programs (Section 1 ). Second,
intelligent reading tools that help scientists understand technical terms
and symbols in scientific papers (Section 2 ). Third, scalable educational
interactions that connect learners to expert knowledge when they read
and complete assignments (Section 3 ).

The broader impacts of my work reach both academia and industry.
Four of my keystone papers on this topic received paper awards
at premier ACM and IEEE conferences in HCI and programming
tools. I have received support from an Alfred P. Sloan Foundation
Grant, an NDSEG Fellowship, and a grant from the Allen Institute
for AI. The research has been grounded in real-world contexts with
research internships on programming tools research teams at Google
and Microsoft Research. One tool has been adopted by Microsoft as
a feature into their widely-used VSCode code editor.

As a systems researcher in human-computer interaction, my meth-
ods involve the human-centered design and implementation of novel
interactions in tandem with algorithms that enable them. I follow
an artifact-driven approach to research described by Wobbrock et
al.,1 wherein contributions of the research come from formative user

Andrew Head - Research Statement - 1



cleaned, ordered, 
complete

lognotebook

• • •

[4]

[27]

[11]

[2]

slice

link

Figure 3: To help data scientists clean and
recover analysis code in computational
notebooks, Code Gathering Tools slice an
execution log linked to the notebook.

Figure 4: Cleaning analysis code in a
notebook with Code Gathering Tools.

2 Head. “Interactive Program Distilla-
tion”. PhD thesis. UC Berkeley, 2020

3 Head, Hohman, Barik, Drucker, and De-
Line. “Managing Messes in Computational
Notebooks”. In: Proceedings of the CHI
Conference on Human Factors in Comput-
ing Systems. ACM, 2019. (Demo video).
Best Paper Award.

research (i.e., interviews, document analyses, observations), usable
tools that embody new design ideas, and evaluations of those tools
with users. The systems incorporate algorithms for program slic-
ing, program synthesis, and natural language definition detection.
The algorithms are tailored to support user needs, and in turn the
interactions motivate improvements to the algorithms.

1 Interactive Systems for Distilling Programs in Software
Development and Data Science

In software engineering, data science, and the programming class-
room, a good sample program is a powerful resource for conveying
knowledge. My dissertation explored how program distillation tools,
a type of IDE for Ideas, could help programmers create readable,
reusable sample programs by providing novel authoring capabilities
supported by static and dynamic program analysis.

My research focused on three case studies: data scientists cleaning
their computational notebooks; programmers sharing snippets; and
teachers creating step-by-step, output-rich programming tutorials.
My formative observations and interviewswith users from all of these
groups revealed that programmers could be supported in producing
sample programs if their tools could help them select code of interest
from sample programs, simplify it to remove superfluous detail, sup-
plement it with descriptions and outputs, and sequence programs into
series of interrelated snippets.2

For example, in the domain of data science, distillation tools help data
scientists collect, review, and share fragmented analysis code. The ed-
itors data scientists use to write code—like computational notebooks
and REPLs—often fragment code in a way such that it becomes dif-
ficult if not impossible to identify the code that produced promising
results. I developed Code Gathering Tools as a distillation tool that
augments computational notebooks to help data scientists collect,
review, and share fragmented analysis code.3

The key insight is that data scientists could be supported by applying
a tried-and-true program analysis method—program slicing—to a
notebook’s execution log aligned with the notebook’s cells (Figure 3).
I implemented a static program slicer for Python. Then I built a
user interface that supported selection of results in the notebook and
(1) extracting ordered, cleaned notebooks that produced those results
(Figure 4); (2) finding code that produced a result; and (3) comparing
slices of code that produced versions of results.

Code gathering tools have seen impact in academia and industry.
Our paper on the topic received a best paper award at CHI, ACM’s

Andrew Head - Research Statement - 2

https://youtu.be/cpADNWjNvkU


SnippetSource program

Figure 5: Interactive, iterative code selec-
tion with CodeScoop.

Figure 6: Simplifying a code snippet with
CodeScoop by replacing an expression
with a value from the execution trace.

Figure 7: Authoring a programming tu-
torial in Torii, a live programming editor
that supports linked editing of snippets,
source programs, and outputs.

4 Chaudhary. “Jupyter’s Archive: Search-
able Output Histories for Computational
Notebooks”. MA thesis. 2019

5 Head, Glassman, Hartmann, and Hearst.
“Interactive Extraction of Examples from
Existing Code”. In: Proceedings of the CHI
Conference on Human Factors in Comput-
ing Systems. ACM, 2018. (Demo video).
Nominated for Best Paper Award.

6 Head, Jiang, Smith, Hearst, and Hart-
mann. “Composing Flexibly-Organized
Step-by-Step Tutorials from Linked
Source Code, Snippets, and Outputs”.
In: Proceedings of the CHI Conference on
Human Factors in Computing Systems.
ACM, 2020. (Demo video). Nominated
for Best Paper Award.

7 Head, Lo, Kang, Fok, Skjonsberg, Weld,
and Hearst. “Augmenting Scientific Pa-
pers with Just-in-Time, Position-Sensitive
Definitions of Terms and Symbols”. In:
Proceedings of the CHI Conference on Hu-
man Factors in Computing Systems. 2021.
arXiv: 2009.14237 [cs.HC]. (Demo video).
To appear.

premier conference in HCI. The project sparked follow-on research,
including a Master’s thesis project,4 a Microsoft summer internship
project, andaUCBerkeleyundergraduate independent studyproject.
In industry, a qualitative usability study showed that professional data
scientists found the system useful and appropriating the tools for new
purposes during exploratory data analysis. Microsoft incorporated
the tools into their Python extension in Visual Studio Code, where
it has been installed over four thousand times.

To extend thedesign space, I designed two interactive systems to help
programmers author tutorials through iterative interaction with al-
gorithms for program analysis. CodeScoop helps programmers ex-
tract brief, complete snippets from existing programs through incre-
mental selection of code with a program slicer (Figure 5) and simpli-
fication of code by substituting program expressions with concrete
literal values collected during program execution (Figure 6).5 Torii
helps teachers create step-by-step programming tutorials containing
many interrelated snippets and outputs with a novel computational
notebook environment with live programming that propagates ed-
its across snippets, source programs from which they are made, and
outputs generated from running the snippets (Figure 7).6

In lab studies, I’ve found that the tools support tutorial authoring:
with CodeScoop, for instance, programmers extract snippets in half
the time it takes with a baseline editor. The design of the tools were
grounded in interviews with expert authors, observations, and a con-
tent analysis of hundreds of tutorials. My dissertation2 (Chapters 2,
3) contributes a literature review on program comprehension, sam-
ple program design, interactive tools, and program analyses to set an
agenda for future research into IDEs for Ideas that support program
distillation for tutorials and data science.

2 Intelligent Interfaces for Reading Scientific Papers

Inmycurrentwork, I explore how IDEs for Ideas can support reading
of complex natural language artifacts. Intelligent reading interfaces
pose a unique challenge for researchers in computer science. To min-
imize disruption, interface elements need to be informative, yet small
in size and easy to dismiss. Interactions need to be developed con-
currently with algorithms such that algorithms provide useful output
and the interactions provide suitable error recovery mechanisms.

I andProfessorMartiA.Hearst began studyof this problemby launch-
ing the ScholarPhi project,7 securing a grant from the Alfred P. Sloan
Foundation. I designed and assessed ScholarPhi, an interactive, intel-
ligent system for reading scientific papers. Motivated bymy formative
observations of readers, ScholarPhi was designed to help scientists

Andrew Head - Research Statement - 3

https://www.youtube.com/watch?v=RYbhnRDbvyY
https://youtu.be/tTzrBds7Nns
http://arxiv.org/abs/2009.14237
https://youtu.be/y8Kuyf9jygs


A

B

C

Figure 8: Reading a scientific paper with
ScholarPhi. Features include (A) position-
sensitive tooltips showing definitions of
terms and symbols; (B) highlighting pas-
sages containing a term and lowlighting
all others; (C) equation diagrams showing
definitions of multiple symbols.

8 Kang, Head, Sidhu, Lo, Weld, and Hearst.
“Document-Level Definition Detection in
Scholarly Documents: Existing Models,
Error Analyses, and Future Directions”.
In: Proceedings of the EMNLP First Work-
shop on Scholarly Document Processing.
2020

9 Head, Sadowski, Murphy-Hill, and
Knight. “When Not to Comment:
Questions and Tradeo�s with API
Documentation for C++ Projects”.
In: Proceedings of the International
Conference on Software Engineering.
2018

10 Head, Appachu, Hearst, and Hartmann.
“Tutorons: Generating Context-Relevant,
On-Demand Explanations and Demonstra-
tions of Online Code”. In: Proceedings of
the Symposium on Visual Languages and
Human-Centric Computing. IEEE, 2015.
Nominated for Best Paper Award.

understand technical terms and symbols that they would otherwise
find too costly to look up. I built ScholarPhi with four innovative
features that inform scientists with minimal disruption: position-
sensitive tooltips that expose definitions of terms and symbols; precise
subsymbol selection; visual highlighting and lowlighting of passages
based onwhether they include selected terms; and equation diagrams
that show definitions of multiple terms at once (Figure 8).

Empirical studies of the tool suggest that ScholarPhi provides useful
information in a usable format without distraction. In a controlled
study, researchers answered questions about a scientific paper more
quickly, while viewing less of the paper, with the tools.

I and Hearst developed ScholarPhi into cross-institution, interdis-
ciplinary research project at the crossroads of AI and HCI. Post-
doctoral scholar Dongyeop Kang has begun development novel NLP
algorithms to extract definitions of terms from academic texts.8 My
initial error recovery mechanisms in ScholarPhi provided a starting
point for research on the topic by Ph.D. student Raymond Fok and
Professor Daniel S. Weld. We actively collaborate on research with
the Semantic Scholar research team at the Allen Institute for AI. An
alpha release of the tool is planned. The release is backed by funding,
infrastructure, and engineering from the Allen Institute, and offers a
real-world setting to evaluate the algorithms and interactions.

3 Connecting Learners to Expert Knowledge at Scale

When learners face obstacles understanding complex information,
they can be supported through timely interaction with experts. A
third topic in my research shows how IDEs for Ideas can connect
learners with expert explanations and assistance at scale.

First, tools can augment complex artifacts with generated explana-
tions encoding expert knowledge. In a collaborative study with the
Google Engineering Productivity Research team, I conducted fire-
house interviews and experience sampling that showed that a short-
age of engineering effort available can inhibit satisfactory documenta-
tion of APIs.9 To help programmers understand unexplained code in
programming documentation, I developed Tutorons, or rule-based
algorithms that generated context-relevant natural language descrip-
tions of code in tutorials. The explanations reduce programmers’
need to search for supplemental documentation,10 and demonstrate
the possibility of encoding expert knowledge in natural language ex-
planation algorithms that augment complex artifacts.

Second, they can support dialogue between learners and experts at
scale. I helped design FixPropagator, a tool for massive program-

Andrew Head - Research Statement - 4



ming classrooms that lets teachers provide personalized feedback on
programming assignments to many students at once. The tool uses
program synthesis to learn bug-fixing program transformations to
student submissions, and then leverages the transformations as ve-
hicles to propagate teacher-written feedback to students.11 I have 11 Head*, Glassman*, Soares*, Suzuki,

Figueredo, D’Antoni, and Hartmann.
“Writing Reusable Code Feedback at
Scale with Mixed-Initiative Program Syn-
thesis”. In: Proceedings of the Conference
on Learning at Scale. ACM, 2017. (*) The
first three authors contributed equally to
this work.

also explored how tools can motivate experts to engage with learners
through collaborative interactions with gameplay elements.12

12 Head, Xu, and Wang. “ToneWars:
Connecting Language Learners and Na-
tive Speakers through Collaborative Mo-
bile Games”. In: International Conference
on Intelligent Tutoring Systems. Springer,
2014. (Demo video).

Research Agenda

In future research, I am interested in exploring how intelligent tools
can address pressing knowledge-sharing problems of our time with
research integratingHCI,AI, education, andprogramming. Mygoals,
from most concrete to most speculative, are as follows:

Characterizing good pedagogy in programming tutorials: Programming
tutorials are widely-used to communicate programming knowledge
in programming classrooms, online education, and industry. The tu-
torial authors I speak with ask about how to design them well: How
large should snippets be? Should they be interactive? What types
of interactivity are effective (e.g., visualizing results, live program-
ming, etc.)? How should tricky programming concepts be explained?
I would like to conduct controlled experiments and observations to
generate this knowledge, disseminate findings as guidelines to tuto-
rial authors in the academy and industry, and develop new tutorial
authoring toolkits that encode best practices.

Data analysis tools that are safe, fast, and presentation-friendly: Recently,
research and industry have proposed an abundance of data analysis
tools with novel execution models like Jupyter, Observable, Streamlit,
and my collaborators’ nbsafety.13 These tools implicitly make trade- 13 Macke, Gong, Lee, Head, Xin, and

Parameswaran. “Static Analysis for Safer
Notebook Interactions”. In: Proceedings
of the SPLASH Workshop on HCI and PL.
ACM, 2020

offs between rapid exploration, safety (i.e., preventing loss of results),
and presentation. I would like to characterize these tradeoffs through
studies with data scientists, and explore newmodels of analysis tools
that simultaneously support safety, speed, and presentation.

Program synthesis for programming education: Could state-of-the-art tools
for generating code (e.g., program synthesis, evolutionary algorithms,
and program repair techniques) be brought to bear to produce read-
able code for educational purposes? I would like to explore how
recent techniques for generating programs for general-purpose pro-
gramming languages can be extended to (1) tailor sample programs to
individual readers by taking their prior knowledge into account, and
(2) generate not only programs but sequences of snippets that show in
the most effective way how the program can be built up line-by-line.

Andrew Head - Research Statement - 5

https://www.youtube.com/watch?v=l85vPhEX1DY


Intelligent writing tools for scientists: Howcan tools help scientistswrite
better articles? I am interested in the challenge problem of designing
intelligent writing tools to motivate the co-design of novel NLP algo-
rithms and writing interfaces. This requires tailoring of NLP models
to support definition detection, coherence measurement, coreference
resolution, and text generation, among other things. It also requires
understanding interaction patterns for humansworking togetherwith
text generators of specialized text.

Beyond the goals above, I am broadly interested in exploring how
algorithms and interactions can help people create and read complex
information artifacts of all kinds, including infographics, interactive
data narratives, textbooks, mathematical proofs, and others. I look
forward to research collaborations that can characterize the process of
reading and writing in these domains and contribute new algorithms
and interactions to support those processes.

Andrew Head - Research Statement - 6


	Interactive Systems for Distilling Programs in Software Development and Data Science 
	Intelligent Interfaces for Reading Scientific Papers 
	Connecting Learners to Expert Knowledge at Scale 
	Research Agenda
	Characterizing good pedagogy in programming tutorials
	Data analysis tools that are safe, fast, and presentation-friendly
	Program synthesis for programming education
	Intelligent writing tools for scientists


